home *** CD-ROM | disk | FTP | other *** search
MacBinary | 2000-03-26 | 4.9 KB | [ TEXT/MPad]
open in: MacOS 8.1
extracted
|
Win98
extracted
|
DOS
extracted
browse contents |
view JSON data
|
view as text
This file was processed as: MacBinary
(archive/macBinary ).
Confidence Program Detection Match Type Support
10%
dexvert
MacBinary (archive/macBinary)
fallback
Supported
1%
dexvert
Text File (text/txt)
fallback
Supported
100%
file
MacBinary II, Sun Mar 26 18:22:17 2000, modified Sun Mar 26 18:22:17 2000, creator 'MPad', type ASCII, 4252 bytes "Complex Roots" , at 0x111c 398 bytes resource
default (weak)
99%
file
data
default
74%
TrID
Macintosh plain text (MacBinary)
default
25%
TrID
MacBinary 2
default (weak)
100%
siegfried
fmt/1762 MacBinary (II)
default
100%
lsar
MacBinary
default
id metadata key value macFileType [ TEXT] macFileCreator [ MPad]
hex view +--------+-------------------------+-------------------------+--------+--------+ |00000000| 00 0d 43 6f 6d 70 6c 65 | 78 20 52 6f 6f 74 73 00 |..Comple|x Roots.| |00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000040| 00 54 45 58 54 4d 50 61 | 64 00 00 00 00 00 00 00 |.TEXTMPa|d.......| |00000050| 00 00 00 00 00 10 9c 00 | 00 01 8e b5 04 4c 29 b5 |........|.....L).| |00000060| 04 4c 29 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |.L).....|........| |00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 f8 6f 00 00 |........|.....o..| |00000080| 2d 2d 20 54 68 69 73 20 | 65 78 61 6d 70 6c 65 20 |-- This |example | |00000090| 67 69 76 65 73 20 66 6f | 72 6d 75 6c 61 73 20 66 |gives fo|rmulas f| |000000a0| 6f 72 20 71 75 61 64 72 | 61 74 69 63 20 61 6e 64 |or quadr|atic and| |000000b0| 20 63 75 62 69 63 20 72 | 6f 6f 74 73 20 61 6e 64 | cubic r|oots and| |000000c0| 20 75 73 65 73 20 74 68 | 65 20 69 6d 61 67 65 20 | uses th|e image | |000000d0| 63 6f 6d 6d 61 6e 64 20 | 74 6f 20 76 69 73 75 61 |command |to visua| |000000e0| 6c 69 7a 65 20 61 20 63 | 6f 6d 70 6c 65 78 20 66 |lize a c|omplex f| |000000f0| 75 6e 63 74 69 6f 6e 0d | 0d 2d 2d 2d 2d 2d 2d 2d |unction.|.-------| |00000100| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 20 71 75 61 |--------|---- qua| |00000110| 64 72 61 74 69 63 20 72 | 6f 6f 74 73 20 2d 2d 2d |dratic r|oots ---| |00000120| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 0d 2d 2d 20 |--------|----.-- | |00000130| 41 6c 67 6f 72 69 74 68 | 6d 20 66 6f 72 20 72 65 |Algorith|m for re| |00000140| 61 6c 20 70 61 72 74 73 | 20 6f 66 20 72 6f 6f 74 |al parts| of root| |00000150| 73 20 69 73 20 66 72 6f | 6d 20 62 79 20 57 2e 48 |s is fro|m by W.H| |00000160| 2e 20 50 72 65 73 73 2c | 20 53 2e 20 54 65 75 6b |. Press,| S. Teuk| |00000170| 6f 6c 73 6b 79 20 65 74 | 20 61 6c 2c 22 4e 75 6d |olsky et| al,"Num| |00000180| 65 72 69 63 61 6c 20 52 | 65 63 69 70 65 73 22 2e |erical R|ecipes".| |00000190| 0d 2d 2d 20 4f 63 63 61 | 73 69 6f 6e 61 6c 6c 79 |.-- Occa|sionally| |000001a0| 20 34 61 63 20 3c 3c 20 | 62 2c 20 73 6f 20 6f 6e | 4ac << |b, so on| |000001b0| 65 20 6f 66 20 74 68 65 | 20 72 6f 6f 74 73 20 69 |e of the| roots i| |000001c0| 73 20 28 65 72 72 6f 6e | 65 6f 75 73 6c 79 29 20 |s (erron|eously) | |000001d0| 63 61 6c 6c 65 64 20 30 | 2e 0d 2d 2d 20 54 68 69 |called 0|..-- Thi| |000001e0| 73 20 66 6f 72 6d 75 6c | 61 74 69 6f 6e 20 61 76 |s formul|ation av| |000001f0| 6f 69 64 73 20 74 68 65 | 20 70 72 6f 62 6c 65 6d |oids the| problem| |00000200| 2e 0d 2d 2d 20 69 6d 70 | 6c 65 6d 65 6e 74 65 64 |..-- imp|lemented| |00000210| 20 62 79 20 44 61 76 69 | 64 20 44 65 72 62 65 73 | by Davi|d Derbes| |00000220| 20 28 64 65 72 62 65 73 | 40 75 68 75 72 75 2e 75 | (derbes|@uhuru.u| |00000230| 63 68 69 63 61 67 6f 2e | 65 64 75 29 20 66 6f 72 |chicago.|edu) for| |00000240| 20 4d 61 74 68 50 61 64 | 0d 0d 2d 2d 20 47 69 76 | MathPad|..-- Giv| |00000250| 65 6e 20 61 20 71 75 61 | 64 72 61 74 69 63 20 6f |en a qua|dratic o| |00000260| 66 20 74 68 65 20 66 6f | 72 6d 0d 0d 2d 2d 20 20 |f the fo|rm..-- | |00000270| 20 20 20 20 20 20 20 20 | 61 2a 78 5e 32 20 2b 20 | |a*x^2 + | |00000280| 62 2a 78 20 2b 20 63 20 | 3d 20 30 0d 20 0d 2d 2d |b*x + c |= 0. .--| |00000290| 20 77 69 74 68 20 72 65 | 61 6c 20 63 6f 65 66 66 | with re|al coeff| |000002a0| 69 63 69 65 6e 74 73 2c | 20 66 69 6e 64 20 74 68 |icients,| find th| |000002b0| 65 20 28 70 6f 73 73 69 | 62 6c 79 20 63 6f 6d 70 |e (possi|bly comp| |000002c0| 6c 65 78 29 20 72 6f 6f | 74 73 2e 0d 2d 2d 20 52 |lex) roo|ts..-- R| |000002d0| 6f 6f 74 73 20 61 72 65 | 20 67 69 76 65 6e 20 69 |oots are| given i| |000002e0| 6e 20 74 68 65 20 66 6f | 72 6d 20 78 20 2b 20 69 |n the fo|rm x + i| |000002f0| 79 2e 0d 7e 0d 73 67 6e | 28 78 29 20 3d 20 31 20 |y..~.sgn|(x) = 1 | |00000300| 77 68 65 6e 20 78 20 3e | 3d 20 30 2c 2d 31 20 6f |when x >|= 0,-1 o| |00000310| 74 68 65 72 77 69 73 65 | 0d 44 20 3d 20 28 62 2a |therwise|.D = (b*| |00000320| 62 20 2d 20 34 2a 61 2a | 63 29 09 2d 2d 20 64 69 |b - 4*a*|c).-- di| |00000330| 73 63 72 69 6d 69 6e 61 | 6e 74 0d 78 31 20 3d 20 |scrimina|nt.x1 = | |00000340| 2d 28 62 20 2b 20 73 67 | 6e 28 62 29 2a 73 71 72 |-(b + sg|n(b)*sqr| |00000350| 74 28 44 29 29 2f 28 32 | 2a 61 29 20 77 68 65 6e |t(D))/(2|*a) when| |00000360| 20 44 20 3e 3d 20 30 2c | 20 2d 62 2f 28 32 2a 61 | D >= 0,| -b/(2*a| |00000370| 29 20 6f 74 68 65 72 77 | 69 73 65 0d 78 32 20 3d |) otherw|ise.x2 =| |00000380| 20 63 2f 78 31 20 77 68 | 65 6e 20 44 20 3e 3d 20 | c/x1 wh|en D >= | |00000390| 30 2c 20 2d 62 2f 28 32 | 2a 61 29 20 6f 74 68 65 |0, -b/(2|*a) othe| |000003a0| 72 77 69 73 65 0d 79 31 | 20 3d 20 30 20 77 68 65 |rwise.y1| = 0 whe| |000003b0| 6e 20 44 20 3e 3d 20 30 | 2c 20 73 71 72 74 28 2d |n D >= 0|, sqrt(-| |000003c0| 44 29 2f 28 32 2a 61 29 | 20 6f 74 68 65 72 77 69 |D)/(2*a)| otherwi| |000003d0| 73 65 0d 79 32 20 3d 20 | 2d 79 31 0d 7e 0d 0d 2d |se.y2 = |-y1.~..-| |000003e0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------| |000003f0| 2d 2d 20 63 75 62 69 63 | 20 72 6f 6f 74 73 20 2d |-- cubic| roots -| |00000400| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------| |00000410| 2d 2d 0d 2d 2d 20 54 61 | 72 74 61 67 6c 69 61 27 |--.-- Ta|rtaglia'| |00000420| 73 20 26 20 43 61 72 64 | 61 6e 6f 27 73 20 66 6f |s & Card|ano's fo| |00000430| 72 6d 75 6c 61 65 20 66 | 6f 72 20 74 68 65 20 72 |rmulae f|or the r| |00000440| 6f 6f 74 73 20 6f 66 20 | 61 20 63 75 62 69 63 0d |oots of |a cubic.| |00000450| 2d 2d 20 66 72 6f 6d 20 | 55 6e 69 76 65 72 73 61 |-- from |Universa| |00000460| 6c 20 45 6e 63 79 63 6c | 6f 70 61 65 64 69 61 20 |l Encycl|opaedia | |00000470| 6f 66 20 4d 61 74 68 65 | 6d 61 74 69 63 73 0d 2d |of Mathe|matics.-| |00000480| 2d 20 69 6d 70 6c 65 6d | 65 6e 74 65 64 20 62 79 |- implem|ented by| |00000490| 20 44 61 76 69 64 20 44 | 65 72 62 65 73 20 66 6f | David D|erbes fo| |000004a0| 72 20 4d 61 74 68 50 61 | 64 2c 20 38 20 53 65 70 |r MathPa|d, 8 Sep| |000004b0| 74 20 31 39 39 33 0d 2d | 2d 20 47 69 76 65 6e 20 |t 1993.-|- Given | |000004c0| 61 20 63 75 62 69 63 20 | 6f 66 20 74 68 65 20 66 |a cubic |of the f| |000004d0| 6f 72 6d 0d 2d 2d 0d 2d | 2d 20 20 20 20 20 20 20 |orm.--.-|- | |000004e0| 20 20 20 20 20 61 30 2a | 78 5e 33 20 2b 20 61 31 | a0*|x^3 + a1| |000004f0| 2a 78 5e 32 20 2b 20 61 | 32 2a 78 20 2b 20 61 33 |*x^2 + a|2*x + a3| |00000500| 20 3d 20 30 0d 2d 2d 20 | 0d 2d 2d 20 77 69 74 68 | = 0.-- |.-- with| |00000510| 20 72 65 61 6c 20 63 6f | 65 66 66 69 63 69 65 6e | real co|efficien| |00000520| 74 73 2c 20 66 69 6e 64 | 20 74 68 65 20 28 70 6f |ts, find| the (po| |00000530| 73 73 69 62 6c 79 20 63 | 6f 6d 70 6c 65 78 29 20 |ssibly c|omplex) | |00000540| 72 6f 6f 74 73 2e 0d 0d | 63 31 20 3d 20 61 31 2f |roots...|c1 = a1/| |00000550| 61 30 20 20 2d 2d 20 22 | 6e 6f 72 6d 61 6c 69 7a |a0 -- "|normaliz| |00000560| 65 22 2c 20 69 2e 65 2e | 20 6d 61 6b 65 20 6c 65 |e", i.e.| make le| |00000570| 61 64 69 6e 67 20 63 6f | 65 66 66 69 63 69 65 6e |ading co|efficien| |00000580| 74 20 3d 20 31 0d 63 32 | 20 3d 20 61 32 2f 61 30 |t = 1.c2| = a2/a0| |00000590| 0d 63 33 20 3d 20 61 33 | 2f 61 30 0d 0d 2d 2d 20 |.c3 = a3|/a0..-- | |000005a0| 64 69 73 63 72 69 6d 69 | 6e 61 6e 74 20 44 3b 20 |discrimi|nant D; | |000005b0| 69 66 20 44 20 3e 20 30 | 2c 20 6f 6e 65 20 72 65 |if D > 0|, one re| |000005c0| 61 6c 20 72 6f 6f 74 3b | 20 65 6c 73 65 20 74 68 |al root;| else th| |000005d0| 72 65 65 20 72 65 61 6c | 20 72 6f 6f 74 73 0d 2d |ree real| roots.-| |000005e0| 2d 20 28 61 74 20 6d 6f | 73 74 20 74 77 6f 20 64 |- (at mo|st two d| |000005f0| 69 73 74 69 6e 63 74 20 | 72 65 61 6c 20 69 66 20 |istinct |real if | |00000600| 44 20 3d 20 30 29 0d 0d | 61 20 3d 20 63 32 20 2d |D = 0)..|a = c2 -| |00000610| 20 28 63 31 2a 63 31 29 | 2f 33 2e 30 0d 62 20 3d | (c1*c1)|/3.0.b =| |00000620| 20 28 28 28 32 2e 30 2a | 63 31 2a 63 31 2a 63 31 | (((2.0*|c1*c1*c1| |00000630| 29 20 2d 20 28 39 2e 30 | 2a 63 31 2a 63 32 29 29 |) - (9.0|*c1*c2))| |00000640| 2f 32 37 2e 30 29 20 2b | 20 63 33 0d 44 20 3d 20 |/27.0) +| c3.D = | |00000650| 28 62 2a 62 2f 34 2e 30 | 29 20 2b 20 28 61 2a 61 |(b*b/4.0|) + (a*a| |00000660| 2a 61 2f 32 37 2e 30 29 | 0d 0d 6e 75 6d 52 65 61 |*a/27.0)|..numRea| |00000670| 6c 52 6f 6f 74 73 20 3d | 20 33 20 77 68 65 6e 20 |lRoots =| 3 when | |00000680| 44 20 3c 20 30 2c 20 31 | 20 6f 74 68 65 72 77 69 |D < 0, 1| otherwi| |00000690| 73 65 0d 0d 64 48 61 6c | 66 20 3d 20 73 71 72 74 |se..dHal|f = sqrt| |000006a0| 28 61 62 73 28 44 29 29 | 0d 0d 73 67 6e 70 20 3d |(abs(D))|..sgnp =| |000006b0| 20 2d 31 20 77 68 65 6e | 20 28 28 2d 62 2f 32 2e | -1 when| ((-b/2.| |000006c0| 30 29 20 2b 20 64 48 61 | 6c 66 29 20 3c 20 30 2c |0) + dHa|lf) < 0,| |000006d0| 20 31 20 6f 74 68 65 72 | 77 69 73 65 20 20 20 20 | 1 other|wise | |000006e0| 0d 73 67 6e 71 20 3d 20 | 2d 31 20 77 68 65 6e 20 |.sgnq = |-1 when | |000006f0| 28 28 2d 62 2f 32 2e 30 | 29 20 2d 20 64 48 61 6c |((-b/2.0|) - dHal| |00000700| 66 29 20 3c 20 30 2c 20 | 31 20 6f 74 68 65 72 77 |f) < 0, |1 otherw| |00000710| 69 73 65 0d 0d 70 20 3d | 20 30 2e 30 20 77 68 65 |ise..p =| 0.0 whe| |00000720| 6e 20 28 28 2d 62 2f 32 | 2e 30 29 20 2b 20 64 48 |n ((-b/2|.0) + dH| |00000730| 61 6c 66 29 20 3d 20 30 | 2c 0d 20 20 20 20 20 73 |alf) = 0|,. s| |00000740| 67 6e 70 2a 28 61 62 73 | 28 28 2d 62 2f 32 2e 30 |gnp*(abs|((-b/2.0| |00000750| 29 20 2b 20 64 48 61 6c | 66 29 29 5e 28 31 2e 30 |) + dHal|f))^(1.0| |00000760| 2f 33 2e 30 29 20 6f 74 | 68 65 72 77 69 73 65 0d |/3.0) ot|herwise.| |00000770| 71 20 3d 20 30 2e 30 20 | 77 68 65 6e 20 28 28 2d |q = 0.0 |when ((-| |00000780| 62 2f 32 2e 30 29 20 2d | 20 64 48 61 6c 66 29 20 |b/2.0) -| dHalf) | |00000790| 3d 20 30 2c 0d 20 20 20 | 20 20 73 67 6e 71 2a 28 |= 0,. | sgnq*(| |000007a0| 61 62 73 28 28 2d 62 2f | 32 2e 30 29 20 2d 20 64 |abs((-b/|2.0) - d| |000007b0| 48 61 6c 66 29 29 5e 28 | 31 2e 30 2f 33 2e 30 29 |Half))^(|1.0/3.0)| |000007c0| 20 6f 74 68 65 72 77 69 | 73 65 0d 0d 73 20 3d 20 | otherwi|se..s = | |000007d0| 28 2d 62 2f 32 2e 30 29 | 2f 73 71 72 74 28 2d 61 |(-b/2.0)|/sqrt(-a| |000007e0| 2a 61 2a 61 2f 32 37 2e | 30 29 3b 20 20 74 68 65 |*a*a/27.|0); the| |000007f0| 74 61 20 3d 20 61 63 6f | 73 28 73 29 0d 0d 2d 2d |ta = aco|s(s)..--| |00000800| 20 72 6f 6f 74 73 20 6f | 66 20 74 68 65 20 66 6f | roots o|f the fo| |00000810| 72 6d 20 78 20 2b 20 69 | 79 0d 0d 78 31 20 3d 20 |rm x + i|y..x1 = | |00000820| 32 2e 30 2a 70 20 2d 20 | 28 63 31 2f 33 2e 30 29 |2.0*p - |(c1/3.0)| |00000830| 20 77 68 65 6e 20 6e 75 | 6d 52 65 61 6c 52 6f 6f | when nu|mRealRoo| |00000840| 74 73 20 3d 20 31 20 61 | 6e 64 20 61 62 73 28 44 |ts = 1 a|nd abs(D| |00000850| 29 20 3c 20 31 2e 30 65 | 2d 31 30 2c 0d 20 20 20 |) < 1.0e|-10,. | |00000860| 20 20 28 70 2b 71 29 20 | 2d 20 28 63 31 2f 33 2e | (p+q) |- (c1/3.| |00000870| 30 29 20 77 68 65 6e 20 | 6e 75 6d 52 65 61 6c 52 |0) when |numRealR| |00000880| 6f 6f 74 73 20 3d 20 31 | 20 61 6e 64 20 61 62 73 |oots = 1| and abs| |00000890| 28 44 29 20 3e 20 31 2e | 30 65 2d 31 30 2c 0d 20 |(D) > 1.|0e-10,. | |000008a0| 20 20 20 20 32 2e 30 2a | 73 71 72 74 28 2d 61 2f | 2.0*|sqrt(-a/| |000008b0| 33 2e 30 29 2a 63 6f 73 | 28 74 68 65 74 61 2f 33 |3.0)*cos|(theta/3| |000008c0| 2e 30 29 20 2d 20 28 63 | 31 2f 33 2e 30 29 20 6f |.0) - (c|1/3.0) o| |000008d0| 74 68 65 72 77 69 73 65 | 0d 0d 78 32 20 3d 20 2d |therwise|..x2 = -| |000008e0| 70 20 2d 20 28 63 31 2f | 33 2e 30 29 20 77 68 65 |p - (c1/|3.0) whe| |000008f0| 6e 20 6e 75 6d 52 65 61 | 6c 52 6f 6f 74 73 20 3d |n numRea|lRoots =| |00000900| 20 31 20 61 6e 64 20 61 | 62 73 28 44 29 20 3c 20 | 1 and a|bs(D) < | |00000910| 31 2e 30 65 2d 31 30 2c | 0d 20 20 20 20 20 2d 28 |1.0e-10,|. -(| |00000920| 70 2b 71 29 2f 32 2e 30 | 20 2d 20 28 63 31 2f 33 |p+q)/2.0| - (c1/3| |00000930| 2e 30 29 20 77 68 65 6e | 20 6e 75 6d 52 65 61 6c |.0) when| numReal| |00000940| 52 6f 6f 74 73 20 3d 20 | 31 20 61 6e 64 20 61 62 |Roots = |1 and ab| |00000950| 73 28 44 29 20 3e 20 31 | 2e 30 65 2d 31 30 2c 0d |s(D) > 1|.0e-10,.| |00000960| 20 20 20 20 20 32 2e 30 | 2a 73 71 72 74 28 2d 61 | 2.0|*sqrt(-a| |00000970| 2f 33 2e 30 29 2a 63 6f | 73 28 28 74 68 65 74 61 |/3.0)*co|s((theta| |00000980| 2f 33 2e 30 29 20 2b 20 | 31 32 30 29 20 2d 20 63 |/3.0) + |120) - c| |00000990| 31 2f 33 2e 30 20 6f 74 | 68 65 72 77 69 73 65 20 |1/3.0 ot|herwise | |000009a0| 0d 0d 78 33 20 3d 20 78 | 32 20 77 68 65 6e 20 6e |..x3 = x|2 when n| |000009b0| 75 6d 52 65 61 6c 52 6f | 6f 74 73 20 3d 20 31 2c |umRealRo|ots = 1,| |000009c0| 20 20 20 20 20 20 0d 20 | 20 20 20 20 32 2e 30 2a | . | 2.0*| |000009d0| 73 71 72 74 28 2d 61 2f | 33 2e 30 29 2a 63 6f 73 |sqrt(-a/|3.0)*cos| |000009e0| 28 28 74 68 65 74 61 2f | 33 2e 30 29 20 2b 20 32 |((theta/|3.0) + 2| |000009f0| 34 30 29 20 2d 20 63 31 | 2f 33 2e 30 20 6f 74 68 |40) - c1|/3.0 oth| |00000a00| 65 72 77 69 73 65 20 0d | 0d 79 31 20 3d 20 30 2e |erwise .|.y1 = 0.| |00000a10| 30 20 20 2d 2d 20 6e 6f | 20 6d 61 74 74 65 72 20 |0 -- no| matter | |00000a20| 77 68 61 74 2c 20 6d 75 | 73 74 20 68 61 76 65 20 |what, mu|st have | |00000a30| 61 74 20 6c 65 61 73 74 | 20 6f 6e 65 20 72 65 61 |at least| one rea| |00000a40| 6c 20 72 6f 6f 74 0d 0d | 79 32 20 3d 20 28 70 2d |l root..|y2 = (p-| |00000a50| 71 29 2a 73 71 72 74 28 | 33 2e 30 29 2f 32 2e 30 |q)*sqrt(|3.0)/2.0| |00000a60| 20 77 68 65 6e 20 6e 75 | 6d 52 65 61 6c 52 6f 6f | when nu|mRealRoo| |00000a70| 74 73 20 3d 20 31 20 61 | 6e 64 20 61 62 73 28 44 |ts = 1 a|nd abs(D| |00000a80| 29 20 3e 20 31 2e 30 65 | 2d 31 30 2c 0d 20 20 20 |) > 1.0e|-10,. | |00000a90| 20 20 30 2e 30 20 6f 74 | 68 65 72 77 69 73 65 0d | 0.0 ot|herwise.| |00000aa0| 0d 79 33 20 3d 20 2d 79 | 32 20 77 68 65 6e 20 6e |.y3 = -y|2 when n| |00000ab0| 75 6d 52 65 61 6c 52 6f | 6f 74 73 20 3d 20 31 20 |umRealRo|ots = 1 | |00000ac0| 61 6e 64 20 61 62 73 28 | 44 29 20 3e 20 31 2e 30 |and abs(|D) > 1.0| |00000ad0| 65 2d 31 30 2c 0d 20 20 | 20 20 20 30 2e 30 20 6f |e-10,. | 0.0 o| |00000ae0| 74 68 65 72 77 69 73 65 | 0d 0d 72 6f 6f 74 31 20 |therwise|..root1 | |00000af0| 3a 3d 20 7b 78 31 2c 79 | 31 7d 3a 3b 20 20 20 20 |:= {x1,y|1}:; | |00000b00| 20 72 6f 6f 74 32 20 3a | 3d 20 7b 78 32 2c 79 32 | root2 :|= {x2,y2| |00000b10| 7d 3a 3b 20 20 20 72 6f | 6f 74 33 20 3a 3d 20 7b |}:; ro|ot3 := {| |00000b20| 78 33 2c 79 33 7d 3a 0d | 0d 2d 2d 2d 2d 2d 2d 2d |x3,y3}:.|.-------| |00000b30| 20 45 6e 74 65 72 20 74 | 68 65 20 63 6f 65 66 66 | Enter t|he coeff| |00000b40| 69 63 69 65 6e 74 73 20 | 66 6f 72 20 74 68 65 20 |icients |for the | |00000b50| 63 75 62 69 63 20 68 65 | 72 65 20 2d 2d 2d 2d 2d |cubic he|re -----| |00000b60| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 0d 2d 2d 20 20 20 20 |--------|-.-- | |00000b70| 20 20 20 20 20 20 20 20 | 61 30 2a 78 5e 33 20 2b | |a0*x^3 +| |00000b80| 20 61 31 2a 78 5e 32 20 | 2b 20 61 32 2a 78 20 2b | a1*x^2 |+ a2*x +| |00000b90| 20 61 33 20 3d 20 30 0d | 0d 61 30 20 3d 20 33 35 | a3 = 0.|.a0 = 35| |00000ba0| 3b 20 20 20 20 61 31 20 | 3d 20 31 35 3b 20 20 20 |; a1 |= 15; | |00000bb0| 20 61 32 20 3d 20 2d 35 | 3b 20 20 20 20 61 33 20 | a2 = -5|; a3 | |00000bc0| 3d 20 2d 32 30 0d 0d 72 | 6f 6f 74 31 3a 7b 30 2e |= -20..r|oot1:{0.| |00000bd0| 37 36 2c 30 2e 30 30 7d | 0d 72 6f 6f 74 32 3a 7b |76,0.00}|.root2:{| |00000be0| 2d 30 2e 35 39 2c 30 2e | 36 34 7d 0d 72 6f 6f 74 |-0.59,0.|64}.root| |00000bf0| 33 3a 7b 2d 30 2e 35 39 | 2c 2d 30 2e 36 34 7d 0d |3:{-0.59|,-0.64}.| |00000c00| 0d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 20 43 68 65 |.-------|---- Che| |00000c10| 63 6b 20 74 68 65 20 73 | 6f 6c 75 74 69 6f 6e 2d |ck the s|olution-| |00000c20| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 0d 69 6e 63 6c |--------|---.incl| |00000c30| 75 64 65 20 22 3a 69 6e | 63 6c 3a 63 6f 6d 70 6c |ude ":in|cl:compl| |00000c40| 65 78 20 6f 70 73 22 0d | 7a 28 78 29 20 3d 20 61 |ex ops".|z(x) = a| |00000c50| 30 2a 43 63 75 62 65 28 | 78 29 20 2b 20 61 31 2a |0*Ccube(|x) + a1*| |00000c60| 43 73 71 72 28 78 29 20 | 2b 20 61 32 2a 78 20 2b |Csqr(x) |+ a2*x +| |00000c70| 20 7b 61 33 2c 30 7d 20 | 2d 2d 20 54 68 65 20 63 | {a3,0} |-- The c| |00000c80| 6f 6d 70 6c 65 78 20 63 | 75 62 69 63 0d 0d 2d 2d |omplex c|ubic..--| |00000c90| 20 63 6f 6e 66 69 72 6d | 20 74 68 61 74 20 7a 28 | confirm| that z(| |00000ca0| 78 29 20 69 73 20 7a 65 | 72 6f 20 61 74 20 74 68 |x) is ze|ro at th| |00000cb0| 65 20 72 6f 6f 74 73 0d | 7a 28 72 6f 6f 74 31 29 |e roots.|z(root1)| |00000cc0| 3a 7b 30 2e 30 30 2c 30 | 2e 30 30 7d 0d 7a 28 72 |:{0.00,0|.00}.z(r| |00000cd0| 6f 6f 74 32 29 3a 7b 30 | 2e 30 30 2c 30 2e 30 30 |oot2):{0|.00,0.00| |00000ce0| 7d 0d 7a 28 72 6f 6f 74 | 33 29 3a 7b 30 2e 30 30 |}.z(root|3):{0.00| |00000cf0| 2c 30 2e 30 30 7d 0d 0d | 2d 2d 2d 2d 2d 2d 2d 2d |,0.00}..|--------| |00000d00| 20 63 68 65 63 6b 20 74 | 68 65 20 73 6f 6c 75 74 | check t|he solut| |00000d10| 69 6f 6e 20 67 72 61 70 | 68 69 63 61 6c 6c 79 0d |ion grap|hically.| |00000d20| 2d 2d 20 64 65 66 69 6e | 65 20 61 6e 20 61 72 72 |-- defin|e an arr| |00000d30| 61 79 20 74 68 61 74 20 | 73 61 6d 70 6c 65 73 20 |ay that |samples | |00000d40| 70 6f 69 6e 74 73 20 6f | 6e 20 74 68 65 20 73 75 |points o|n the su| |00000d50| 72 66 61 63 65 20 6f 66 | 3a 0d 2d 2d 20 20 20 20 |rface of|:.-- | |00000d60| 5a 20 3d 20 61 62 73 28 | 7a 28 78 29 29 20 76 73 |Z = abs(|z(x)) vs| |00000d70| 2e 20 58 20 3d 20 72 65 | 61 6c 28 78 29 20 2c 20 |. X = re|al(x) , | |00000d80| 59 20 3d 20 69 6d 61 67 | 69 6e 61 72 79 28 78 29 |Y = imag|inary(x)| |00000d90| 0d 2d 2d 20 54 68 69 73 | 20 73 75 72 66 61 63 65 |.-- This| surface| |00000da0| 20 73 68 6f 75 6c 64 20 | 64 69 70 20 74 6f 20 7a | should |dip to z| |00000db0| 65 72 6f 20 61 74 20 74 | 68 65 20 72 6f 6f 74 73 |ero at t|he roots| |00000dc0| 2e 20 28 54 68 65 20 73 | 61 6d 70 6c 65 64 20 73 |. (The s|ampled s| |00000dd0| 75 72 66 61 63 65 20 77 | 69 6c 6c 20 64 69 70 20 |urface w|ill dip | |00000de0| 6e 65 61 72 20 7a 65 72 | 6f 20 62 75 74 20 69 6e |near zer|o but in| |00000df0| 20 67 65 6e 65 72 61 6c | 20 69 73 20 6e 6f 74 20 | general| is not | |00000e00| 73 61 6d 70 6c 65 64 20 | 65 78 61 63 74 6c 79 20 |sampled |exactly | |00000e10| 61 74 20 61 20 72 6f 6f | 74 29 2e 0d 0d 73 75 72 |at a roo|t)...sur| |00000e20| 66 5b 69 78 2c 69 79 5d | 20 3d 20 20 78 3a 3d 43 |f[ix,iy]| = x:=C| |00000e30| 73 63 61 6c 65 28 69 78 | 2c 69 79 29 2c 20 43 61 |scale(ix|,iy), Ca| |00000e40| 62 73 28 7a 28 78 29 29 | 20 64 69 6d 5b 6d 2c 6d |bs(z(x))| dim[m,m| |00000e50| 5d 0d 0d 2d 2d 20 54 68 | 65 20 69 6e 64 65 78 20 |]..-- Th|e index | |00000e60| 66 6f 72 20 73 75 72 66 | 5b 5d 20 72 75 6e 73 20 |for surf|[] runs | |00000e70| 66 72 6f 6d 20 31 20 74 | 6f 20 6d 2e 20 53 63 61 |from 1 t|o m. Sca| |00000e80| 6c 65 20 74 68 65 20 69 | 6e 64 65 78 20 74 6f 20 |le the i|ndex to | |00000e90| 67 65 74 20 72 65 61 6c | 20 61 6e 64 20 69 6d 61 |get real| and ima| |00000ea0| 67 69 6e 61 72 79 20 70 | 61 72 74 73 20 72 61 6e |ginary p|arts ran| |00000eb0| 67 69 6e 67 20 66 72 6f | 6d 20 58 6d 69 6e 20 74 |ging fro|m Xmin t| |00000ec0| 6f 20 58 6d 61 78 20 61 | 6e 64 20 59 6d 69 6e 20 |o Xmax a|nd Ymin | |00000ed0| 74 6f 20 59 6d 61 78 0d | 73 63 61 6c 65 28 69 2c |to Ymax.|scale(i,| |00000ee0| 6d 69 6e 2c 6d 61 78 2c | 6e 73 74 65 70 73 29 20 |min,max,|nsteps) | |00000ef0| 3d 20 28 69 2d 2e 35 29 | 2a 28 6d 61 78 2d 6d 69 |= (i-.5)|*(max-mi| |00000f00| 6e 29 2f 6e 73 74 65 70 | 73 2b 6d 69 6e 0d 43 73 |n)/nstep|s+min.Cs| |00000f10| 63 61 6c 65 28 69 78 2c | 69 79 29 20 3d 20 7b 73 |cale(ix,|iy) = {s| |00000f20| 63 61 6c 65 28 69 78 2c | 58 6d 69 6e 2c 58 6d 61 |cale(ix,|Xmin,Xma| |00000f30| 78 2c 6d 29 2c 20 73 63 | 61 6c 65 28 69 79 2c 59 |x,m), sc|ale(iy,Y| |00000f40| 6d 69 6e 2c 59 6d 61 78 | 2c 6d 29 7d 0d 0d 6d 3d |min,Ymax|,m)}..m=| |00000f50| 32 34 3b 20 20 20 2d 2d | 20 73 75 72 66 61 63 65 |24; --| surface| |00000f60| 20 69 73 20 73 61 6d 70 | 6c 65 64 20 6f 6e 20 61 | is samp|led on a| |00000f70| 6e 20 6d 20 62 79 20 6d | 20 67 72 69 64 0d 58 6d |n m by m| grid.Xm| |00000f80| 69 6e 20 3d 20 2d 31 3b | 20 58 6d 61 78 20 3d 20 |in = -1;| Xmax = | |00000f90| 31 0d 59 6d 69 6e 20 3d | 20 2d 31 3b 20 59 6d 61 |1.Ymin =| -1; Yma| |00000fa0| 78 20 3d 20 31 0d 5a 6d | 69 6e 20 3d 20 20 30 3b |x = 1.Zm|in = 0;| |00000fb0| 20 5a 6d 61 78 20 3d 20 | 35 30 0d 69 6d 61 67 65 | Zmax = |50.image| |00000fc0| 20 73 75 72 66 20 20 20 | 20 20 20 20 20 20 20 20 | surf | | |00000fd0| 20 20 20 20 20 20 20 2d | 2d 20 73 68 6f 77 20 69 | -|- show i| |00000fe0| 6d 61 67 65 20 6f 66 20 | 74 68 65 20 73 75 72 66 |mage of |the surf| |00000ff0| 61 63 65 0d 70 6c 6f 74 | 20 7b 72 6f 6f 74 31 2c |ace.plot| {root1,| |00001000| 72 6f 6f 74 32 2c 72 6f | 6f 74 33 7d 20 20 20 20 |root2,ro|ot3} | |00001010| 2d 2d 20 73 68 6f 77 20 | 6c 6f 63 61 74 69 6f 6e |-- show |location| |00001020| 73 20 6f 66 20 72 6f 6f | 74 73 0d 0d 70 6c 6f 74 |s of roo|ts..plot| |00001030| 20 7a 28 7b 58 2c 30 7d | 29 5b 31 5d 2f 5a 6d 61 | z({X,0}|)[1]/Zma| |00001040| 78 20 20 20 20 20 2d 2d | 20 70 6c 6f 74 20 74 68 |x --| plot th| |00001050| 65 20 72 65 61 6c 20 70 | 61 72 74 20 6f 66 20 7a |e real p|art of z| |00001060| 20 66 6f 72 20 72 65 61 | 6c 20 78 0d 2d 2d 20 54 | for rea|l x.-- T| |00001070| 68 69 73 20 73 68 6f 75 | 6c 64 20 62 65 20 7a 65 |his shou|ld be ze| |00001080| 72 6f 20 61 74 20 72 65 | 61 6c 20 72 6f 6f 74 73 |ro at re|al roots| |00001090| 2e 20 4f 6e 20 74 68 65 | 20 70 6c 6f 74 74 65 64 |. On the| plotted| |000010a0| 20 73 75 72 66 61 63 65 | 2c 20 72 65 61 6c 20 72 | surface|, real r| |000010b0| 6f 6f 74 73 20 61 72 65 | 20 6c 6f 63 61 74 65 64 |oots are| located| |000010c0| 20 61 6c 6f 6e 67 20 79 | 3d 30 20 73 6f 20 74 68 | along y|=0 so th| |000010d0| 65 20 72 65 61 6c 20 63 | 75 62 69 63 20 70 6c 6f |e real c|ubic plo| |000010e0| 74 74 65 64 20 69 6e 20 | 74 68 69 73 20 77 61 79 |tted in |this way| |000010f0| 20 73 68 6f 75 6c 64 20 | 70 61 73 73 20 74 68 6f | should |pass tho| |00001100| 75 67 68 20 69 74 73 20 | 72 65 61 6c 20 72 6f 6f |ugh its |real roo| |00001110| 74 73 2e 0d 70 6c 6f 74 | 20 30 0d 0d 00 00 00 00 |ts..plot| 0......| |00001120| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001130| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001140| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001150| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001160| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001170| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001180| 00 00 01 00 00 00 01 3c | 00 00 00 3c 00 00 00 52 |.......<|...<...R| |00001190| 77 68 65 6e 20 41 5b 32 | 5d 3e 3d 30 2c 0d 20 20 |when A[2|]>=0,. | |000011a0| 20 20 20 20 20 20 20 61 | 74 61 6e 28 41 5b 32 5d | a|tan(A[2]| |000011b0| 0d 43 6f 6d 70 6c 65 78 | 20 52 6f 6f 74 73 02 00 |.Complex| Roots..| |000011c0| 00 00 54 45 58 54 4d 50 | 61 64 01 00 00 00 00 00 |..TEXTMP|ad......| |000011d0| 00 00 54 45 58 54 4d 50 | 61 64 01 00 00 00 00 00 |..TEXTMP|ad......| |000011e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |000011f0| 00 00 a8 b8 1c 3f 00 00 | 10 9b 00 00 01 56 30 7d |.....?..|.....V0}| |00001200| 0d db 6d b6 db 6d b6 db | 6d b6 db 6d b6 db 6d b6 |..m..m..|m..m..m.| |00001210| db 6d b6 db 6d b6 db 6d | b6 db 6d b6 db 6d b6 db |.m..m..m|..m..m..| |00001220| 6d b6 db 6d b6 db 6d b6 | db 6d b6 db 6d b6 db 6d |m..m..m.|.m..m..m| |00001230| b6 db 6d b6 db 6d b6 db | 6d b6 db 6d b6 db 6d b6 |..m..m..|m..m..m.| |00001240| db 6d b6 db 6d b6 db 6d | b6 db 6d b6 db 6d b6 db |.m..m..m|..m..m..| |00001250| 6d b6 db 6d b6 db 6d b6 | db 6d b6 db 6d b6 db 6d |m..m..m.|.m..m..m| |00001260| b6 db 6d b6 db 6d b6 db | 6d b6 db 6d b6 db 6d b6 |..m..m..|m..m..m.| |00001270| db 6d b6 db 6d b6 db 6d | b6 db 6d b6 db 6d b6 db |.m..m..m|..m..m..| |00001280| 00 00 00 20 05 00 03 02 | 00 02 3f f9 8e fa 35 12 |... ....|..?...5.| |00001290| 94 e9 c8 ae 01 d5 01 2b | 00 03 00 28 01 0d 01 1b |.......+|...(....| |000012a0| 00 c3 00 2e 00 00 00 14 | 00 04 06 4d 6f 6e 61 63 |........|...Monac| |000012b0| 6f 01 39 06 4d 6f 6e 61 | 63 6f 01 39 00 00 01 00 |o.9.Mona|co.9....| |000012c0| 00 00 01 3c 00 00 00 3c | 00 00 00 52 02 fe a1 74 |...<...<|...R...t| |000012d0| 03 ee 00 00 00 1c 00 46 | 00 01 50 52 65 66 00 00 |.......F|..PRef..| |000012e0| 00 12 53 54 52 23 00 00 | 00 1e 00 80 ff ff 00 00 |..STR#..|........| |000012f0| 00 00 00 00 00 00 00 81 | 00 00 00 00 00 24 02 fe |........|.....$..| |00001300| 9e c8 0b 66 6f 6e 74 20 | 26 20 73 69 7a 65 00 00 |...font |& size..| |00001310| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001320| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001330| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001340| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001350| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001360| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00001370| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| +--------+-------------------------+-------------------------+--------+--------+